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The statistical mechanics of directed linelike objects, such as directed polymers 
in an external field, strands of dipoles in both ferro- and electrorheological 
fluids, and flux lines in high-T c superconductors, bears a close resemblance to 
the quantum mechanics of bosons in 2 + 1 dimensions. We show that single- 
component and binary mixture critical phenomena in these systems are in the 
universality class of three-dimensional uniaxial dipolar ferromagnets and ferro- 
electrics. Our results also apply to films of two superfluid species undergoing 
phase separation well below their A-points near T= 0. In the case of directed 
polymers and electrorheological fluids we analyze the effects of free ends occur- 
ring in the sample as well as a novel directionally-dependent compressibility. 

KEY WORDS: Quantum critical phenomena; directed polymers; critical 
mixing; phase transitions. 

1. I N T R O D U C T I O N  A N D  S U M M A R Y  

There has recently been renewed interest in the analogy between the classi- 
cal statistical mechanics of lines and  the q u a n t u m  mechanics of bosons in 

2 + 1 dimensions31) Conf igurat ions  of directed lines can be mapped  onto  
the world lines of a collection of bosons  in one fewer dimension.  Examples 

include flux lines in high- temperature  superconductors ,  c2) polymer nematics 
in a s trong external field, and  ferro- and  electrorheological fluids. (3'4) 

These systems can be modeled by a free energy of the form (see ref. 5 
for a review) 

[-h t2 e c~ b w c 41 F = f d z d 2 r L ~  + ~ ( V •  (1.1) 
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The partition function 

Z=f  [dt][dfp] e F/kBT (1.2) 

is subject to the constraint 

~zfp + V •  (1.3) 

where &p(r, z) = p(r, z) - Po is a cross-sectional areal density deviation from 
its average value Po in a plane perpendicular to z, and t(r, z) is a tangent 
field in the same plane. Given a microscopic description of directed 
polymers, via their trajectories defined by single-valued functions {rj(z)} 
along the z-axis, p(r, z) and t(r, z) are defined by (see Fig. 1) 

and 

p(r, z ) = ~  6 2 [ r -  ri(z)] (1.4) 
i 

t(r, z ) = ~  ~ 6 2 [ r -  ri(z)] (1.5) 
i 

We assume that, as external parameters such as field strength, osmotic 
pressure, temperature, solvent quality, etc., are varied, the polynomial part 
of (1.1) in 6p exhibits a line of first-order phase transitions from a high- to 
low-density phase, terminating in a second-order phase transition. Along 
the critical isochore w = 0, and b then changes sign at the mean field critical 
point. Here and throughout, we distinguish the z direction as the direc- 
tion along which the lines are aligned, and denote by V• the derivative 

Fig. 1. Hydrodynamic volume averaging over directed lines in d +  1 dimensions which leads 
to the coarse-grained density and tangent fields used in this paper. 
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perpendicular to the z axis. Additionally, we use boldface to denote vectors 
in the perpendicular plane. In the case of quantum mechanical bosons, we 
think of the z direction as a timelike axis along which particle world lines 
are extended. Planck's constant h plays the role of "temperature" in this 
system, flh is the sample thickness, and the coupling h is the inverse "mass 
density" of the bosons. 

The constraint (1.3) in the context of polymers corresponds to the 
absence of polymer free ends, ~3.4~ that is, conservation of polymer number as 
we move up the z axis. In the context of quantum mechanical bosons, 
this constraint merely sets t to be the canonical momentum density of the 
particlesJ 4) Models similar to (1.1) were first posed as Landau-Ginzburg- 
type theories, 12'6-8~ but were later shown to be a direct consequence of the 
boson mapping. ~4) 

In fact, this model is equivalent to a three-dimensional uniaxial 
dipolar ferroelectric (or ferromagnet) near its critical point, first studied in 
1969 by Larkin and Khmel'nitskiiJ 9) To see this, we use the constraint 
(1.3) to solve for the longitudinal part of t. Upon integrating out the 
transverse part of t we obtain an effective free energy 

1 dq~d2q_L(21t (21t) 2 qi ) ~'c Feet = f h - -  + eq 2 + ~q2 + b Jap(q., qz)l 2 q- f dz d2r(ap) 4 

(1.6) 

where the quadratic part has been written in Fourier space. Here and 
henceforth, we restrict our attention to the critical isochore, and set w = 0. 
Equation (1.6) is the familiar form of the Landau theory for a uniaxial 
Ising ferromagnet or ferroelectric with a mean field critical point at b = 0. (9) 

A model very similar to (1.1) applies to polymer nematics in which the 
external field is turned off, so that the alignment represents a spontaneously 
broken symmetry instead of being externally imposed. {3'4"6'8) In this case, 
t(r, z) represents a nematic director field and the term �89 2 is replaced 
by the usual nematic gradient free energy. ~176 Simple power counting 
arguments for this model suggest that nonclassical critical behavior results 
below (3 + 1) dimensions. A complete treatment, however, would require a 
discussion of the effects of hairpin turns in the polymer configurations. {4) 
We restrict our attention here to polymer nematics in a strong external 
field, and to length scales less than the spacing between hairpins, to avoid 
these complications. 

1.1. Electrorheological  Fluids and the Effect of Free Ends 

The effective attraction for polymers in a nematie solvent is similar to 
the fluctuation-induced attraction of strings of colloidal spheres discussed 
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by Halsey and Toor. (11) This attractive part  of the interchain potential 
in electrorheological fluids can be offset by a hard-core repulsion at short 
distances, and may be adjusted by varying the dielectric constant of the 
solvent. Since an electric field is required to create directed strings of 
dielectric spheres, hairpin configurations will be greatly suppressed in 
electrorheological fluids, as there is no longer an up-down symmetry. We 
then expect that (1.1) is especially apt for these systems, once free ends are 
taken into account. Halsey and Toor,  (~2) by considering the bulk energetics 
of the system, have argued that at sufficiently large fields, the electro- 
rheological strings will phase separate, leading to two-phase coexistence. 
The critical point discussed here would then describe a transition to a 
uniform density of coexisting liquid and gas dielectric strings. 

To study this point further, consider the free energy at fixed potential 
due to the electric field 

U= I f dz dZr eEn(Y)3 ff2(ff) (1.7) 

where n is the full three-dimensional colloid density, and e(n) is the effective 
dielectric constant. There is an overall minus sign because this is the energy 
at fixed E. Since dZ~(n)/dn2>O, 3 it is energetically favorable to phase 
separate into dense and dilute regions. However, at finite temperature, 
configurational entropy plays a role. Certainly, at fixed electric field, the 
temperature can be increased until entropy dominates and there is only one 
uniform phase of directed lines. However, entropy also favors shorter 
chains at such temperatures, which could obscure the entanglement effects 
which are the main focus of this paper (see below). 

Recent numerical simulations by Tao (14) suggest that at fixed 
temperature there are actually two critical electric fields, Ecl and Ec2 
(Ec2 <Ecl). Below Ec2 the fluid consists primarily of a gas of monomers.  
Above Ecl the colloidal particles clump together and phase separate into 
"columns" and dilute chains as Halsey and Toor 's  argument would suggest. 
The columns may in fact be crystalline. (14'15) Between Ec2 and Ecl 
there are dense strings of colloidal spheres with random positions in 
any constant-z cross section. The simulation suggests a first-order phase 

3 For a system of spheres arranged in a cubical lattice or amorphously, the Clausius-Mosotti 
relation holds, so ~(n)= (1 + 2vTn)/(1 -v~,n), where 7 is the molecular polarizability and v is 
the molecular volume. In this case (d2e/dn2)(n) is explicitly positive. A virial expansion for 
the bulk dielectric constant in terms of the density can be done in general. The first virial 
term leads to the Clausius-Mosotti relation, and the second term is generally quite small. 
Thus (d2e/dn2)(n) is expected to be positive even if the spheres are not arranged either 
cubically or randomly. See ref. 13. 
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transition from the random line phase to the clumped phase. At lower 
densities, experimental measurements do not suggest crystalline order in 
the columns. (16) Thus, at low enough densities we can have coexistence of 
liquidlike columns and a gas of chains, possibly terminating in a critical 
point. 

One shortcoming of our model in its present form is that the chains 
it describes must start and stop at the boundaries of the sample. Both 
directed polymers and colloidal chains should be allowed to have free ends 
within the sample. As discussed in Section 4, free ends may be incorporated 
by relaxing the constraint (1.3) and using the free energy (3-5) 

e 2 

b 2 c 4 G(Oz6p+V• ] (1.8) +~ap +~ap + 

By taking G ~ 0% we recover our original model. Additionally, it can be 
shown that G ~ l  as l-~ o% where 1 is the average chain length. (3'4) The 
crossover from elongated objects to point objects when the chains are finite 
will be discussed in detail in Section 4. 

1.2. Phase Separation in the Flux Liquid Phase 

Flux lines in superconductors may also be described by an analogy 
with bosons. (2) However, in the absence of magnetic monopoles, flux lines 
cannot have free ends inside the sample. Their behavior, then, is much 
closer to the behavior of quantum mechanical bosons, as the constraint 
(1.3) is always satisfied. 

Calculations to date for fluctuating flux lines have assumed a purely 
repulsive pair potential.(2) Muzikar and Pethicke,(17~ however, have argued 
that an effective attractive interaction arises under some circumstances 
near Hc~ in the extreme type II limit. This interaction would convert the 
continuous onset of flux penetration at Hcl to a first-order transition. An 
even more intriguing situation would arise if the interaction between the 
flux lines had two distinct minima (see the inset to Fig. 3). In this case, 
there should be a first-order transition at Hcl, and a line separating two 
coexisting flux liquid phases, as in Fig. 2. Our theory applies to the critical 
point marking the terminus of this first-order phase boundary. The critical 
isochore is shown as a dotted line in the figure. 
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Fig. 2. Speculative phase diagram for type II superconductors with an attractive double well 
interaction between flux lines (see the inset to Fig. 3) which allows for coexisting dense and 
dilute entangled flux liquids. At sufficiently high temperatures, this line terminates in a critical 
point. The critical isochore, which marks the extension of this line into the single-phase 
region, is shown as a dotted line. 

1.3. Quantum Critical Phenomena 

Our analysis, of course, can also be applied directly to boson systems 
at T =  0, which are equivalent to infinitely long directed polymers. ~1) In the 
case of a single particle species, we would be describing the terminus of 
a line of first-order transitions separating superfluids coexisting at two 
different densities. How this situation might come about is illustrated in 
Fig. 3. The inset shows an unusual pair potential with two  distinct minima 
describing particles which, like helium, are light enough to avoid crys- 
tallization at T =  0 at low pressures. The two minima lead to two distinct 
liquid phases with increasing pressure. At low pressures, the stable zero- 
temperature liquid has near neighbors occupying the deeper, outermost 
minimum. As pressure is increased, there is a first-order phase transition to 
a denser liquid with the innermost minimum occupied, followed eventually 
by crystallization at even higher pressure. The two liquids must be super- 
fluids at T=0 .  In Fig. 3, the parameters have been adjusted so that the 
critical point for the dilute and dense superfluids S1 and $2 occurs 
below the dashed bline describing the transition to a normal liquid with 
increasing temperature. There is a second critical point associated with the 
coexistence of this normal liquid with a dilute gas. 
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Fig. 3. Pressure-temperature phase diagram for a quantum fluid with the unusual pair 
potential shown in the inset. The outer minimum dominates in the superfluid phase S1, while 
the inner minimum is primarily occupied in the higher-pressure superfluid $2. Phases S1 and 
$2 are separated from a normal liquid N by the dashed ,Mine. Points a and b are conven- 
tional critical points. By enhancing quantum fluctuations at T= 0 (say, by increasing h), one 
arrives at the critical point c discussed in the paper. 

To obtain the critical point of interest to us here, we must increase h 
(or decrease the mass) at T = 0  until the two superfluid liquid phases 
become indistinguishable as at the point c in the figure. Although this 
gedanken experiment is clearly rather esoteric, some control over quantum 
fluctuations may be achievable for two-dimensional helium films, where 
out-of-plane fluctuations alter the effective two-body potential. By varying 
the type of substrate, it may be possible to create a purely repulsive effec- 
tive potential and a novel superfluid gas phase at T = 0 .  (18)'4 We should 
stress, however, that we do not expect the unusual phase diagram of Fig. 3 
for either purely repulsive potentials or conventional helium potentials with 
a single minimum. What  happens as the depth of the single minimum in 
a helium-like potential is decreased to approach the limit of a purely 
repulsive potential ('8) is a separate but also interesting question. The 
behavior in this case is described by a quantum tricritical point which is 
discussed in Appendix B. 

The density operator  of the bosons described above is given by (1.4). 
Upon  differentiating with respect to z we have 

4 See, however, recent work by C. Carrero and M. Cole [Phys. Rev. B 46:10947 (1992)] for 
evidence against this hypothesis. 
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dri(Z).v 6Z[ r - r i ( z ) ]  
~?zp(r, z )=  - ~  dz l .r  

i 

= - V  • ~i dri(z) 6 2 [ r -  ri(z)] (1.9) 

The final sum on the right-hand side is just (1.5), so we have derived (1.3). 
The quantity 

t(r, z )=~  ~ c52[r-- ri(2)] 
i 

is just the momentum operator of the bosons. (2"4) On a more formal level, 
note that the "time dependence" (i.e., the z dependence) of the quantum 
operator (1.4) is given by the (Wick rotated) Heisenberg equation of 
motion, 

~3zp(r, z )=  [p(r, z), ~ ]  (1.10) 

where ~ is the underlying quantum Hamiltonian. Upon identifying (1.1) 
with the integral over imaginary time of the coarse-grained hydrodynamic 
Lagrangian associated with this Hamiltonian (as is appropriate for finite- 
temperature quantum statistical mechanics), we recover (1.3) from (1.10) 
upon using the commutation relation between p(r, z) and t(r, z), 

k B T ,  -, ~2, 
[p(r, z), t(r', z)] =--h-- v l  o t r -  r') (1.11) 

In the hydrodynamic limit considered here, this commutator becomes the 
classical "Poisson bracket" relation between density and momentum, which 
arises because the momentum operator is the generator of translations. (19)'5 
The constraint (1.3) thus directly reflects the noncommutivity of the under- 
lying position and momentum operators. 

Note also that our results represent a new universality class for Ising- 
like quantum critical phenomena. A related type of quantum critical 
phenomenon, extensively studied in the past, (2~ arises for the Ising model 
in a transverse magnetic field. The quantum Hamiltonian defined on a 
hypercubical lattice in d dimensions is 

= - J  Z ~  (1.12) 
~i , j )  j 

s See also the treatment of bosons in ref. 20, pp. 6-8. 
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where the {G} are Pauli spin matrices. The ordered state at T = 0  is 
destroyed for sufficiently large h. This disordering transition is known to be 
in the universality class of the (d + 1)-dimensional classical Ising model.(21) 
Equation (1.12) describes a quantum lattice gas, with the world lines of the 
"particles" (up spins, say) in a T=  0 path integral formulation representing 
the directed polymers discussed in this paper. Because the af  is a spin flip 
operator, these "polymers" stop and start at random in (d+ 1) dimensions. 
The appropriate coarse-grained Landau description would be similar to 
(1.1) without, however, the constraint (1.3). The spin flip operator in (1.12) 
does not respect this conservation law, so it is not surprising that we find 
a different universality class for boson critical phenomena. Introducing free 
ends in our model has the same effect as the spin flip operator in (1.12). As 
discussed above, we then find a crossover from the (d+ 1)-dimensional 
uniaxial dipolar Ising critical phenomena to the (d+ 1)-dimensional Ising 
behavior expected for (1.12). 

1.4. Directed Polymer Blends and Quantum Binary Mixtures  

By extending the original model to allow for binary mixtures, we can 
study the consolute point of two different directed polymer species. In 
particular, we can determine the critical exponents near the demixing point 
of directed polymer blends and compare them to those for point particles. 
Analogous phenomena should occur in binary mixtures of two different 
superfluids. Among the possible candidates would be films of 6He and He 4 
or possibly, a superfluid monolayer of spin aligned hydrogen mixed with 
superfluid He 4. As the mass ratio ml/m2 of the two species is increased 
toward unity with h > 0, quantum fluctuations should eventually cause the 
two superfluids to mix. The same effect may be achievable by varying the 
properties of the substrate or formally, by increasing h. A phase diagram as 
a function of temperature, composition, and h is shown in Fig. 4. Note the 
incomplete phase separation appearing for nonzero h. The theory applies to 
the critical point at T=0.  In Section 5 we will analyze such binary 
mixtures in greater detail. Although we shall concentrate on 2 + 1 quantum 
systems, our results are easily adapted to (3 + l)-dimensional quantum 
problems which are well described by mean field theory (see Section 4). 

1.5. Out l ine 

In Section 2 we formulate the Landau theory that will be the focus 
of this paper. We follow the derivation developed in ref, 4 for flux lines, 
which leads to a coherent-state functional integral: From there we describe 
the hydrodynamic theory with and without free ends as in ref. 4. In 

822/71/1-2-3 
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f B 

Fig. 4. Phase diagram for a binary mixture of two superfluid species as a function of the 
concentration of species B, temperature, and Planck's constant. This paper addresses the 
nature of the critical point which occurs at T = 0. 

Appendix A we present a similar derivation for two interacting polymer 
species. 

In Section 3 we describe the correlation functions of this theory which 
could be measured by x-ray or neutron diffraction experiments. We also 
discuss the meaning of the direction-dependent compressibility which 
characterizes these directed line systems. 

In Section 4 we study the critical behavior of our model via an expan- 
sion in 2 -  e + 1 dimensions. We reproduce the results of Larkin and 
Khmel'nitskii  for ~ = 0 when there are no free ends (9) and find that free 
ends are a relevant perturbation leading to the critical behavior of a 
( d +  1)-dimensional Ising model with short-range interactions. 

Finally, in Section 5 we discuss the critical mixing of two polymer or 
quantum boson species. Using the free energy derived in Appendix A, we 
show that, just as in the point-particle case, the critical mixing of linelike 
objects is in the same universality class as single-component critical 
phenomena. 

Appendix B discusses how the transition at T = 0 from a vacuum to a 
superfluid gas changes to a transition from a vacuum to a supertluid liquid 
when a purely repulsive pair potential acquires a single minimum of 
sufficient depth. 
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2. C O H E R E N T - S T A T E  F U N C T I O N A L  INTEGRALS A N D  
L A N D A U  T H E O R Y  

The derivation of (1.1) from a more microscopic free energy for 
directed lines follows the presentations in refs. 2 and 4. We only outline the 
main points here, first reviewing the theory for chains which span the 
system. Internal free ends are then introduced by adding a source to the 
boson coherent-state field theory. (3'4) 

We start from the following path integral partition function for the N 
chains: 

ZN= I~ [dry] 
i = I  

xexp - ~ dz -2\dz] + ~ V[r,(z)-rj(z)] (2.1) 
i L i < j  

where we have restricted our attention to interactions between lines 
through an equal "time" potential V[ri(z)-rj(z)]. 

The boson field theory is derived in three steps. We first write the 
transfer matrix associated with (2.1) in terms of a many-particle real-time 
Schr6dinger equation for the polymer positions, and then second quantize 
this equation using bosons. Finally, we pass to a coherent-state functional 
integral representation of the second quantized formalism. 

The grand canonical partition sum which results is 

zgr- Z eL" J "TZN=f [d0]Edr e sE~,*,01 (2.2) 
x = o  

where 0(r, z) is a complex boson field. The boson action S reads 

L [O*(r'z)(Oz-DV, ~-fi) t~(r'z) ] 

S=fo dzfd2rL+�89 g(r_r)j~p(r,z)12,~p(r,,z),2 (2.3) 

where D = kB T/2g, fi = #/k B T, and ~ = V/k B T. Standard manipulations 
show that the density of flux lines is 

p(r, z ) =  IO(r, z)l 2 (2.4) 

2.1. Entangled Limit w i th  Free Ends 

We now assume that all phases are dense enough to be entangled, and 
expand around the mean density P0. For polymers of length l, entangle- 
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ment means (Dl)l/2>>pol/2 , while for quantum systems, we require very 
low temperatures so that the thermal de Broglie wavelength is large com- 
pared to the particle spacing. We parametrize the field ~, by ~ = x/P ei~ a 
change of variables with unit functional determinant, and find from (2.3) 
that 

S= f dz d2r ~D(V • + Dp(V • O)2 + ip~zO- fip + 2 P2 j 
[_ 4p 

(2.5) 

Upon introducing an auxiliary field t(r, z) conjugate to V• z) via a 
Hubbard-Stratonovich transformation, and integrating out 0(r,z), we 
arrive at the partition sum (1.2). (4'=~ See Appendix A for the analogous 
transformation applied to binary mixtures of quantum bosons. 

We can add a (Poisson distribution) of free ends to the theory by 
adding to the action (2.3) a term of the form <3) 

aS=  - r / f  dz d2r[~(r, z) + ~*(r, z)] 

= - f  dz d2r 2t/x/-fi cos 0 (2.6) 

The mean polymer length l is related to t/ by 2~llkB T= x/-~o. (4) We may 
expand this term in powers of 0 if the fluctuations in 0 are small, which 
they will be if the polymers are sufficiently dense and entangled. To leading 
order in 0, Eq. (2.6) becomes 

aS ~ const + f dz d2r r I ~ 0 2 (2.7) 

The Hubbard-Stratonovich transformation now leads to 

{ - ~  D(V• 
S = f dz d2r + 4p 

Vp2 1 } # p + ~  + [azp + V .  "t] 2 (2.8) 
4~/,,/-fi 

Upon expanding around an average density Po, we arrive at the theory for 
finite-length polymers (1.8), with G = 1 / 4 t / ~ o  and h = 2D/po. 

3. C O R R E L A T I O N S  A N D  C O M P R E S S I B I L I T Y  

From the free energy (1.8) we can, by considering only quadratic 
terms, easily find the hydrodynamic form of the structure function, which 
could be measured by either neutron or x-ray diffraction. Here and hence- 
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forth we change units so that e =  1. The Fourier-transformed density- 
density correlation function is then 

(6p(qj_, qz) fiP(-q• -q~) } 
S(q• q_,)- p~ 

kr~ T( h + Gq 21) 
(3.1) 

(Gc~q~ + Gh + c~h) q~ + (Gb + h) q~ + Gq 4 + hb 

Note that G drops out of (3.1) upon setting h = 0 .  This would have to be 
the case in the boson analogy, since setting h = 0  neglects quantum 
mechanics by decoupling the momentum from the position. The constraint 
(1.3) is unimportant in this classical limit. 

In the limit G ~  or, we recover the correlations typical of infinite 
polymers with no heads or tails from (3.1), 

kB Tq~ 
--- (3.2) S(qz, q~) (h+Tq2)q2+bq2 +q4 

For small momenta, we can examine the curves of constant S(q• q~). It is 
easy to see that these curves will go into the origin on straight lines, i.e., 
qz"~ q• This is a generic feature expected to hold for all systems with the 
morphology of directed polymers, where the direction is explicitly chosen 
by an external field. Recalling that the limit as ]ql ~ 0 of the structure func- 
tion is related to the compressibility of the sample (e.g., ref. 23), we can 
determine the compressibility of a sample of directed lines, which will 
depend on the direction of the compression. 6 Upon considering a compres- 
sional wave at an angle ~b from the z axis, we take the momentum to be 
q~ = q cos ~b and q• = q sin ~b, and find, for small q, 

kB T 
S(qa, qz) q'2O b + h(cot q~)2 = kB T)~r(~b) (3.3) 

where Xr is the compressibility, and is a function of the direction ~b in 
which the compression is made. Note again that the h = 0 limit is especially 
simple: The compressibility no longer depends on the compression angle if 
tangent fluctuations are ignored. We then recover the result for an isotropic 
fluid of point particles, namely x r = b  -1. The compressibility enters the 
linear response relation: 

{6p(q• qz) } = z(q• q~) &r(q• q~) (3.4) 

6 We thank Tom Witten for conversations on this point. 
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where 6a is a sinusoidally varying force directed along 3 =  (q• qz). The 
unusual ~b dependence of this response function may be understood as 
follows: Equations (3.4) and (3.3) predict that (6p)=0 for compressions 
when ~b ~ 0. This result arises because squeezing the system along the z axis 
will not change the number of polymers piercing any constant z slice. 
In general, the linear response (3.4) depends on the directions of the 
compression relative to g, as parametrized by ~b. 

Returning to finite-length polymers, and hence to finite G, we repeat 
the above analysis and find a ~b-independent result 

kBT 
S(q• q~) q_to b (3.5) 

Because at sufficiently large distances (larger than the average polymer 
length l) finite-length polymers will ultimately behave like point particles, 
the long-wavelength properties of the sample will not exhibit any character 
of the directed constituents. At intermediate scales, the factors of C(Gq 2) 
may not be neglected in (3.1), and we return to the direction-dependent 
result (3.3). 

4. R E N O R M A L I Z A T I O N  G R O U P  A N D  FINITE L E N G T H  
P O L Y M E R S  

In the last section we saw that at long wavelengths the linelike nature 
of the directed melt disappears for finite chain lengths. Here we construct 
a renormalization group which allows us to study this crossover in 
detail. When G ~ o% we recover the results of Larkin and Khmel'nitski[J 9) 
For G finite, however, the system crosses over to the behavior of a (d+  1)- 
dimensional Ising model with short-range interactions. <21) We shall treat 
the z direction separately from the directions in the plane perpendicular 
to z. We let d be the dimension of the bosom so that the corresponding 
directed polymers exist in (d + 1) dimensions (see Fig. 1). 

Consider first the graph which renormalizes the four-point interaction 
~p4. TO interpret this graph we need to invert a (d+  1)x (d+  1) matrix to 
get the propagator, as there are d degrees of freedom in t and an additional 
degree of freedom from the density fluctuations, 6p. However, as mentioned 
earlier, the transverse modes of t decouple. To make this explicit, we 
decompose t in momentum space, 

t(q• q~) = tL + t r  (4.1) 

with 
qjqk 

to.j= q~ tk (4.2) 
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and 

tr, j=(6jk--qJqk  (4.3) 

In (4.2) and (4.3) the indices j and k only run over the d-dimensional space 
perpendicular to z anff we use the summation convention. Additionally, we 
take tL. j = - iqj~(qa,  qz). With this parametrization, the Fourier transform 
of the divergence of t is simply iq~" t = q~rc, and the Fourier transform of 
t h e  t 2 term in (1.8) is 

f d 2 2 dq~dql[q•  + t ~ -  l _-25- (q• t r )  2] 
q i  

Thus we can integrate out t T from (1.8), and we are left with a theory only 
involving 6p and re. 

Inverting the 2 x 2 quadratic form which remains gives the following 
useful propagators: 

(l@(q_c, qz)l 2) 

h+ Gq 2 
= (GTq~ + Gh + ~zh) q2 + (ab + h) q2• + Gq4 + hb (4.4a) 

(fro(q• q~)[ 2) 

1 q~ +b+~q~+ Gq2z 
(4.4b) 

q~ (Go~q~ + Gh + ah) q2 z + (Gb + h) q~ + Gq 4 + hb 

(6p*(qa, qz) ~(q_L, qz) ) 

iGqz 
= (G~q~+Gh+c~h)q2z+(Gb+h)q~+Gq~+hb (4.4c) 

After inserting these propagators into the graph shown in Fig. 5, we 
integrate out the frequency-like variable qz and find that the renormalized 
four-point interaction associated with Eq. (1.8) is cR=c+6c+C(c3) ,  
where 

3c; 2 ( q~ 1 dqj_ 
6c 

8 F(d/2)(&z) d/2 q~ O 

(1 + 1/2 

x (h + c~q~ + c~(h/G) j/2 [(1 + b/q~)3] 1/2 (4.5) 

Near the critical point, b ~ 0 ,  and so when G =  o% 6c diverges in the 
infrared for d ~< 2. This infrared divergence suggests an e-expansion around 
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)<_>< 
Fig. 5. Hartree graph which diverges for d < 2. We integrate here over all internal momenta. 

d = 2, where e = 2 - d. Our approach follows ref. 24, which is a variation of 
the dynamic renormalization group of ref. 25. First we integrate out a 
momentum shell in q j_ from Ae -t to A, but integrate freely over qz. We 
then rescale our variables so that the ultraviolet cutoff in the perpendicular 
direction is held fixed. After rescaling p and t accordingly, we are left with 
the same theory but with different coupling constants. When this procedure 
is iterated, c is driven toward a fixed point which describes the universal 
long-wavelength critical behavior for large G. 

4.1. M o m e n t u m  Shell  In tegra t ion  

We must first integrate out the transverse momentum in the range 
Ae-Z<q• <A. This can be done straightforwardly by expanding the 
functional integral in c. Care must be taken to account for all possible 
contractions of the operators in the expansion. The symmetry factors can 
be found in the usual way for Wick expansions. It is important to note that 
diagrams renormalize the remaining low-momentum modes, and are not 
simply expectation values. Graphs which renormalize the quadratic and 
quartic contributions to Landau theory are shown in Fig. 6. Upon carrying 
out this procedure, we arrive at the following relations for the intermediate 
values of the coupling constants in (1.8): 

h ' =  h (4.6a) 

~' = ~ (4.6b) 

C fA daq l[ (h+Gq2)  1/2 1 ] b ' = b + - -  4x / -  ~ ~ ,(2~)aL ( - f f - + ~ 5 ~  (h+~q2+~(h/G))m (4.6c) 

c ' = c f l - -  3c I A ddqi 
\ 8 ,/-6 JAe-' (2 y 

x [ (h + Gq 2 a)1/2 1 
(4.6d) L'l-'~ ~ ~ 2  (h ~,-~q~ Jff o~(h/a))l/2jj 

G' = G (4.6e) 

where we have gone to one-loop order. In (4.6) we have already integrated 
over qz. 
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C) 
(a) 

(b) 
Fig. 6. Graphs which contribute to the renormalization group calculation. In these graphs, 
the internal lines are integrated over all values of q~, but q• is only integrated in a momentum 
shell between A e  - z  and A. (a) A graph which renormalizes the propagator; (b) a graph which 
renormalizes the four-point coupling c. 

We rescale perpendicular lengths by R~ = Rze -t and the z direction 
by 

Z ' = Z e x p l - f i 7 ( l ' ) d l ' -  

In momentum space, these rescatings read q~ = q• ~ and 

q" = q~ exp 7(l') dl' 

where the function ?(1) is to be determined. 
When doing the first momentum shell integration, the coupling 

constants were independent of length scale. However, they then acquire a 
momentum dependence because we have absorbed the large momentum 
effects into them. The correct renormalized theory is a coupled set of 
integral equations where the coupling constants are taken to be scale 
dependent. An alternative, but equivalent approach is to integrate over a 
small momentum range where the coupling constants are approximately 
fixed and then repeat the entire calculation iteratively. This leads to the 
usual differential renormalization group equations. 
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4.2. Recursion Relat ions and Crit ical Behavior 

We now choose an infinitesimal momentum shell e -~ and take the 
limit 6 ~ 0 .  This leads to differential renormalization group equations 
which can be integrated to produce the couplings appropriate for a cutoff 
Ae -t in the perpendicular direction. We use units such that A = 1 in the 
following. We also define the renormalized "reduced temperature" 

c 

r = b + 2(h + c~) 1/2 Aa (4.7) 

which vanishes at the critical point in the fluctuation-corrected theory. The 
constant Aa=2/F(d/2)(4~z) a/2] is a geometrical factor. The differential 
recursion relations valid near d - - 2  are 

dh(l) 
- h(4 - 27) (4.8a) 

dl 
&(l) 

-- a(2 - 27) (4.8b) 
dl 

d r ( l ) (  c ) ch 
= r 2 (4.8c) dI 16rc(h + ~ ~- ~(h/G) 1/2 + 16~G(h + ~ + cffh/G) 1/2 

dc( l ) ( 3c ) 
dI =c 4 - d - y  16rc(h+c~+cffh/G)l/~ (4.8d) 

de(t) 
= G(2 - 27) (4.8e) 

dl 

We set 7 = 2 in order to hold h fixed, and note that c~ is an irrelevant 
variable. We have expanded about  G -1 - -0 .  Examining these recursion 
relations, we see that perturbation theory amounts to an expansion in two 
parameters,  namely ~ = c(h + ~(h/G)1/2 and ( G ) -  1 = hG-1. These couplings 
have the recursion relations 

= ~  ~ -  (4.9a) 

d ( h ) = 2  ( h )  (4.9b) 

where e = 2 - d. 
We first consider the subspace of theories with G =  oe. In this case 

there is a stable, nontrivial fixed point for positive e. Though we have 
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already noted that this theory is identical to the uniaxial ferroelectric, and 
hence should have all the same critical behavior, a direct calculation of 
these exponents provides a useful check of our renormalization group 
method. In particular we can calculate the logarithmic corrections to the 
compressibility discussed in Section 3 in the critical dimension of 2 + 1 = 3. 
Upon setting e = 0 in (4.9a) we solve for g(l) and find that 

g(o) 
g(1) = (4.10) 

1 + [3g(O)/16rc] l 

which leads via (4.8c) to 

( 3 c ( 0 ) )  -1/3 
r(1)=r(O)e 2' 1 + - ] - - ~ l  (4.11) 

Since at this order in e there is no nontrivial rescaling of the fields, we have 

x(q• q~; ro) 

= f dz ddx[exp(iq• �9 x -- iq~z)](p(x ,  z) p(O, O))z=o 

: f e x p [ ; o ' 7 ( Z ' ) d l ' ] d z ' e x p ( d l ) d a x  ' 

x [exp(iq2" x ' -  iq ' z ' ) ] (p ' ( x ' ,  z) p'(O, O))t 

= ( e x p 2 l )  z l ( ( e x p l ) q j _ , { e x p l f i T ( l ' ) d l ' ] } q z ; r ( l ) )  (4.12) 

We now choose l = I *  large enough so that r(l*) has grown to C(1). Then 
we have from (4.11) 

1 = r ( l * )  = r o ( 3 8 o / 1 6 ~ z )  - 1/3 e21 * ( l * )  - 1/3 ( 4 . 1 3 )  

so that 

e 2t* ~ ro ~ Iln r0l 1/3 (4.14) 

and thus 

Iln %11/3 
z ( q , ,  q_-; r o ) -  - -  X(~.l q i ,  Czq~; 1) (4.15) 

F o 
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where ~_ ~ ~ (ln ro)l/3/ro, in agreement with the results of ref. 9. Note 
the anisotropically diverging correlation lengths produced by the directed 
line-like nature of the degrees of freedom. The two-loop calculation of 
ref. 26 leads to the result ~z ~ '~2-2~2/243 to  ~(~32). Recalling the discussion in 
the last section of the compressibility, we have finally 

Iln rol 1/3 1 
)~(q sin ~b, q cos ~b; ro) qZO ro 1 + h(lln rol 1/3/ro)(Cot 0) 2 (4.16) 

which should be compared to the mean field result (3.3). Note that the 
effective direction of the compressional wave changes as we go to longer 
length scales. Near the critical point we always find Z(~b)~ 1/[h(cot ~b)2], 
which appears to be a universal result. 

Similarly, in the ordered phase, we can calculate the specific heat 
exponent by flowing along a renormalization group trajectory and match- 
ing on to an effective free energy at long wavelengths (a more complicated 
calculation shows that this behavior occurs above T c as well). In the 
ordered phase, the bulk free energy is approximately -3f2(r2/2c),  where s 
is the total volume of the system. We then have 

r(/) 2 
Fl = -- 3f2t 2c(l) 

=-3{exp( -d l ) exp I - f iT ( l ' ) d I ' l }  f 2 ~  
r(l) 2 

(4.17) 
c ( l )  

Again choosing l =  l* as in (4.13), we find that 

3 {exp,_ ,.,oxp Ft= - 

~ { e x p [ -  ( d+  2) l* ~ r g [ln roL 1/3 

1 2 

c(l*) 

(4.18) 

Differentiating twice with respect to r0, we recover the correct specific 
heat-like behavior at the critical point. 

Going back to the full theory, we now allow G -~ to take on finite 
values. In this case we are driven away from our fixed point and G-~ flows 
toward o0. This reflects a crossover to an anisotropic but pointlike phase 
where the constraint (1.3), and hence the linelike nature of the polymers, 
is unimportant. Because t decouples from the density fluctuations, the 
quantum mechanical bosons behave classically at long wavelengths. A 
similar crossover occurs in polymer nematics when hairpins are introduced 
into the theory and the previously directed polymers become isotropic. (4) 
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5. M I X I N G  E X P O N E N T S  

We now consider directed polymer blends, or, equivalently, binary 
mixtures of two superfluids. As with binary mixing in classical systems of 
point particles, the mixing exponents are identical to the liquid-gas 
exponents. We demonstrate this equivalence by showing that the Landau- 
Ginzburg theory controlling the mixing fraction is the same as that for 
a single-component critical point, (1.1). For simplicity, we restrict our 
attention to the limit G ~ oo. In Appendix A we derive the quadratic part 
of the free energy of two polymer species using the boson representation. 
To these terms we add nonlinear couplings to account for the configura- 
tional entropy of each polymer species, multiparticle interactions, etc., and 
consider the model free energy 

F= f dz d~x 

- h i  h2 1 ~-t~+~-t~+h,2t,'t2+~ (V• 2 

1 ~ b2 wl 
+ ~ (V+6p2)2 + 6P2+-f6P~+b12g)P!6P~+-ff. 6P~ 

+w2  3 4_C2 O4+C,2 ;lbp  ~ + ~  4 

subject to the constraints 

m 

(5.1 

O~@j+V• �9 ts=O , j =  1, 2 (5.2) 

As with isotropic polymer melts, the energy of two polymers of length L 
scales like L, while the entropy of mixing is independent of L, which leads 
to phase separation at all temperatures when L--* ~ .  To insure a finite 
temperature phase transition, we rescale the bare mixing energy, X, by 
L -1, thus setting b~2 =x/L. The same caveat applies to quantum bosons 
when we set b12 = )U3h. We have neglected gradient terms of the form 
(0,6pi) 2, because these turn out to be irrelevant at the demixing point. 
Terms proportional to (~p16p~ and 6p26p 2 could have been added, but do 
not affect our results in any essential way. Additionally, we assume that the 
(V• 2 terms have been diagonalized so that the term V• .V• is 
not present. It is useful to pass to sum and difference variables, i.e., 
6p+ = (6pl + 6p2)/x~. We only keep terms in the free energy up to second 
order in the noncritical mode 6p+, but keep all terms up to quartic order 
in cSp_. We also define fields t+ = ( t l+ t2 ) /x /2  which are the tangents 
associated with the sum and difference variables. The free energy now takes 
the form 
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F= f dz ddx 

m~-~-t2++~-t2 +h+ t+t +~(V<Op+) 2 -  

1 b+ 2 + -~ (V;6p_)a+--j-6p + + ~ 6 P  2_ (5.3) 

subject to 
O~fip_ + V ; . t _  = 0  (5.8) 

W 3 C ~p4 
+ b+ 6p+6p +--~-. 6P-+ 4! - m 

with the constraints now reading 

Oz6p+ + V •  = 0  (5.4) 

We can again integrate out the transverse parts of t+ and use the 
constraint (5.4) to solve for the longitudinal parts. The resulting quadratic 
part of the free energy reads (in momentum space) 

Fquad=fdqzddqd-2/~ (2~) d -[- ~ ( h  q-~lq2q-q2J-Jf-b _ ) ]~p_ ]2 (5.5) 
q2 

+ h+ -T6p+6p_ +b+ 6p+6p_ 
q• D 

At this point we are in the position to integrate out 6p +, resulting in 

FquadC6p_ ]= ~ f dqz ddql 
2~ (2e) a 

2 2  2 (h_+_(qJq~)+b__+__) 7 
x h - - + q 2 + b  2 2 2 16p_l 2 (5.6) 

- h+(qz/q~+q<+b+ J 

Upon expanding the denominator of (5.6) in q:_ and qz, keeping only 
relevant and marginally relevant terms, and reintroducing t _ ,  we finally 
have 

( - 1  2b + h+ b2 h+~t  2 

1(1 Ft=odzddx~ -Jr- ~ -~ ~-~-+ )(g• )2--}- ~ (b b2+~-~b+/] (5.7) 

W _ 3 C____ 6p 4 
x 6P2_ + ~. 5P_ + 4! _ 

m 
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As in the single-component model, the critical mixing line is obtained 
by setting w = 0. This could be done by altering the chemical potentials 
of the two species, for instance. Our model is thus equivalent to the original 
model (1.1), except for the unimportant coupling :e(c~zc~p_) 2. We conclude 
that the critical mixing of lineIike objects is also in the universality class of 
the three-dimensional uniaxial ferroelectric. 

APPENDIX A. DERIVATION OF H Y D R O D Y N A M I C S  FOR 
BINARY MIXTURES 

Our starting point is a pair of boson field theories, each describing a 
distinct superfluid or polymer species. (2) We then couple them through 
their densities, as well as their "currents" or tangent fields. More precisely, 
the partition function is 

Z = f  [dO*][dO,][dt~*][dOe] e x p ( - S [ 0 * ,  0 , ,  ~'*, 021) (A.1) 

where the action is 

F 
S -~- SI]-@~, ~1/1] -]- S2[l~ff, ~/23 -}- S12[-~/1 'g, @1, ~/ff, @23 

kB T 
The individual terms read 

(A.2) 

while the interaction is 

(A.3) 

S12=fdzddx[B12 I[/ll] 2 11//2t 2 

-[- ?/12(1//I~V• I//1 - i / / lV•  - ([,/./ffV l ~t 2 - I//2V l_ t//ff) ] (A.4) 

The change of variables 

leads to 

S= f dz ddx 

@ j = ~ j  ei~ 

' Dl (V_pl)  2 
ipl 0.01 + 4- D 1 pl(V• 2 

4p~ 
D2(ViP2) 2 

-- fliP1+ p21+ iP2~z02 + 4 p  2 

B2 
-~- D 2 P 2 ( V / 0 2 )  2 - - /~2P2 -[- 4 - P 2  

+ B12PlP2Jr-tll2PlP2V3_O t o r •  2 

(A.5) 

(A.6) 
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We now introduce two fields which we shall see are proportional to the 
tangent fields of the individual species. We start with the identity 

exp{f dz ddxEDlpi(V j O1)2 q.- D2P2(V • tl12PlP2V l Ol.V j_02]} 

[dpl] [dp21 exp dz dax ] D1D2PlP2-tl12plP2 
L +iPl  "V•177 

(A.7) 

Upon using this identity to replace the terms quadratic in 0 appearing in 
(A.6) and integrating over 0j, we find that 

Z= ; [dp~] [dp2] [dp,] [dp23 

x~5[~pl+V•177 pl,P2]) (A.8) 

where 

( D2p2p2q-D1plp2-2rI12plp2pl"p2 1 
D1D2PlP2-rI12PlP2 I 

,1 + D_,(ViP,)~+D2(VlP2) 2 ~, 
S'= f dz dax ~ 4p 1 4p2 ( 

_ _ B 1  2 B 2  2 
(--lilPl--l12P2+--4-p,+--4-P2+B12plp2) 

(A.9) 

We now expand Pi = Po, i + 6Pi around the minimum of the bulk free energy 
and rescale 6pj so that the kinetic term in the action is (1/2kB T)(V• 2 
to obtain 

s ' = + I  dzd~ 

+~- t2  + hl2tl"t2 

1 + ~ (V• ~p~)' +~ (V~p2) ' 

b2 6p~ + blz6p16p2 + ~P~+T 

(A.10) 
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where tj= (Qj2ps, o) m pj and the hj and bj can be read off from (A.9) in the 
expansion of Ps around &,o. The delta functionals in (A.8) impose the 
constraints 

,L6&+V• .tj=o (A.11) 

APPENDIX B. Q U A N T U M  TRICRITICAL POINTS 

Although somewhat outside the main scope of this paper, we summarize 
here another problem in zero-temperature quantum critical phenomena 
which is soluble by the coherent-state path integral methods. (29-3~ For 
purely repulsive pair potentials, the phase diagram for interacting bosons 
is expected to be as shown in Fig. 7a. 7 Helium-like potentials with a 

7 See for example, ref. 27. The same phase diagram was applied to high-temperature super- 
conductors in ref. 2. 

C R Y S T A L /  

" NORMAL SUPERFLUID ,' FLUID 

(a) 

,' LIQUID 
SUPERFLUID ,' 

GAS 
T 

(b) 

Fig. 7. Schematic pressure-temperature phase diagram for (a) bosons with a purely repulsive 
potential, and (b) bosons with a single minimum deep enough to produce first-order 
liquid-gas coexistence at finite temperatures. As the depth of the minimum is decreased, we 
expect that the liquid-gas critical point in (b) recedes toward low temperatures, eventually 
becoming a tricritical point separating the lambda line from a first-order transition from gas 
to superfluid. The quantum tricritical point discussed in Appendix B arises when this 
finite-temperature tricritical point just reaches T =  0. Further decrease in the minimum (or an 
increase in h) leads to the phase diagram in (a). 

822/71/1-2-4 
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sufficiently deep single minimum, on the other hand, lead to the familiar 
phase diagram of Fig. 7b. At T = 0 and zero pressure, there is a continuous 
transition from a vacuum to a superfluid gas for repulsive potentials. (3~ 
The corresponding transition from a vacuum to a superfluid liquid for 
helium-like potentials is strongly first order. As the depth of the single 
minimum in a helium-like potential is decreased (or as h is increased), this 
first-order transition should weaken, ultimately becoming continuous at 
some point. This changeover is described by a tricritical point within the 
coherent-state path integral formalism. 

To see how this quantum tricritical point arises, we generalize the path 
integral used to describe d-dimensional superfluid gases in ref. 30, 

; [ d 0 * ] [ d 0 ]  e x p ( - S [ 0 * ,  O]/h) (B.1) 

where the "action" is 

S/h=fdzdax[O*(~z-OV2) 0 - ~  1012+ u [014+ *010161 (B.2) 

Here, D is the quantum "diffusion constant" related to the boson mass by 
D = h/m, and # is the chemical potential. The coupling u describes pairwise 
interactions, while v represents three-body terms. If u is positive, the poten- 
tial is predominantly repulsive in the dilute limit and the vacuum (0 = 0) 
to superfluid gas (0 # 0 )  transition occurs at /~=0 within mean field 
theory. Mean field theory correctly describes the continuous transition in 
all dimensions greater than d = 2, where there are logarithmic corrections.(28) 

For u negative, on the other hand, the predominant pairwise inter- 
action is attractive. One must now appeal to a positive sixth-order term 
to stabilize the functional integral. Upon minimizing the sixth-order 
polynomial part of (B.2), one then finds that mean field theory predicts a 
first-order transition from 0 = 0 to 0 r 0 at a chemical potential given by 

U 2 

- 4 v  (B.3) 

A closely related analysis describes finite-temperature phase separation in 
He3-He 4 mixtures. 

The boundary between regimes of continuous and first-order trans- 
itions from the vacuum occurs at a tricritical point located within mean 
field theory at /~ = 0 and u =0.  8 Fluctuations alter the mean field predic- 

8 For a discussion of finite-temperature tricritical points in 3He-4He mixtures, see ref. 31. 
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tions for ordinary thermal tricritical points only for d < 3 ;  there are 
logarithmic corrections for d =  3. It is easy to check that the anisotropic 
gradient terms in the quantum tricritical action (B.2) do not alter the mean 
field tricritical exponents for either two- or three-dimensional quantum 
systems. 

There are two contexts in which these observations may become 
experimentally relevant. The first was discussed by Cheng etal.,  (18) who 
proposed to use the substrate to alter the effective interparticle potential in 
helium films. The second arises from work by Muzikar and Pethicke, (17) 
who found circumstances under which the interaction between vortices 
could become attractive for type II superconductors. This converts the 
usual continuous transition at H c l  to a first-order transition. The bound- 
ary between these two possibilities is exactly the quantum tricritical point 
discussed in this Appendix, for the case of two-dimensional bosons. The 
Meissner phase for superconductors corresponds to the vacuum discussed 
above. (2) In practice, the first-order transition of Muzikar and Pethicke 
may only occur at relatively low temperatures. Once the entropic penalty 
for confinement in the potential well becomes comparable to the well 
depth, we expect the transition to become continuous again. The equivalent 
criterion for quantum systems is that the zero-point energy be larger than 
the depth of the minimum in the pair potential. The "quantum" tricritical 
point discussed here would then appear in type I! superconductors as a 
point on the Hc~ line separating a low-temperature first-order transition 
from a high-temperature continuous one. 
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